For steel frame infrastructure facilities like thermal power plants, storage facilities or port facilities, the more advanced seismic performance is needed which not only prevent major damages against assumed design ground motions but also result in the “desirable failure mode” that concerns the recovery works or prevent from resulting in catastrophic failure mode, even under severe ground motions beyond design assumptions in which occurrence of some damages in structures are inevitable.

“Seismic structures which can control the locations of failure of structural members inside structures” is one of the examples of this seismic performance. By adding this performance to steel frame structures at the stage of seismic design, the high resilience structures which concern recovery works after earthquakes can be realized.

In this research, a basic study on the seismic performance which controls the locations of fractures of steel frame members by adjusting the cross sections of each structural member was carried out. The analytical studies about the design procedure to realize this seismic performance were conducted. Then, by conducting the shaking table tests for simple steel frame structures and confirming the location of fractures under dynamic loads, the possibility of this seismic performance was discussed experimentally.

This content is only available via PDF.
You do not currently have access to this content.