Abstract
The purpose of this study is to examine the effects of the environment on 3D printed Polylactic Acid (PLA), a biodegradable thermoplastic polymer. The experimental program was specifically designed to explore the influence of print temperature and aging temperature on the mechanical performance of the printed material. Printing at the elevated temperatures (30–40°C) resulted in slight mechanical property changes. In order to understand which of the changes could also be caused by simply storing the materials at the elevated temperature, samples were printed at 25°C and subsequently aged (at 30–45°C) before mechanical testing. All mechanical testing was performed in standard laboratory temperature on an MTS Criterion. All of the mechanical properties were not greatly altered by printing or aging at elevated temperatures, suggesting that printing and using in extreme weather environments could be reasonable. The yield stress is not affected by storage at elevated temperatures, but is increased (or enhanced) by printing at elevated temperatures. The maximum stress is increased (or enhanced) by both aging and printing at elevated temperatures, but is accompanied by a large reduction in strain capacity. Changes that are observed in mechanical properties will be incorporated in future material models to accurately capture material behavior.