A Code Case in the framework of JSME Nuclear Codes and Standards is being developed to incorporate a seismic design evaluation methodology for piping by means of advanced elastic-plastic response analysis methods and strain-based fatigue criteria. The Code Case as an alternative seismic design rule over the current rule will provide a more rational seismic design evaluation than the current criteria.

This paper demonstrates an application result of the JSME Seismic Code Case to an actual complex piping system. The secondary coolant piping system of Japanese Fast Breeder Reactor, Monju, was selected as a representative of the complex piping systems. The elastic-plastic time history analysis for the piping system was performed and the piping system has been evaluated according to the JSME Seismic Code Case. The evaluation by the Code Case provides a reasonable result in terms of the piping fatigue evaluation that governs seismic integrity of piping systems. Moreover, it is found that the supporting forces and the response accelerations of the piping system obtained by the elastic-plastic response analysis also become more rational results than those with the current elastic response analysis. The contradiction of two requirements in piping design, flexibility for thermal expansion and rigidity for seismic response, can be effectively relaxed by use of the Code Case being developed.

This content is only available via PDF.
You do not currently have access to this content.