Creep properties both in hot hydrogen and in air of a vanadium-modified CrMo steel 2.25Cr1Mo0.25V, widely used in hydroprocessing reactors in petrochemical industry, were investigated to determine the effect of hydrogen on high-temperature creep behavior of the low-alloy ferritic steel. The minimum creep strain rate in hydrogen is higher than that in air, whereas the creep strain at failure in hydrogen is relatively smaller. Many tiny spherical cavities are dispersively distributed in the ruptured specimen under hydrogen, which has relatively higher Vickers hardness. Based on the thermodynamics theory, the pressure of methane generated by the so-called “methane reaction” in the vanadium-modified CrMo steel can be calculated by using corresponding thermodynamic data, assuming that methane can reach its equilibrium state during cavitation. Meanwhile, a creep constitutive model based on continuum damage mechanics (CDM) was proposed, taking methane pressure into consideration. The results show that methane pressure increases nonlinearly with increase of hydrogen pressure while it decreases gradually with increase of temperature. The constitutive model considering the damage induced by methane pressure can be used to predict the effect of hydrogen pressure and temperature on creep life, indicating that the influence of hydrogen at elevated temperatures becomes smaller when increasing temperature or decreasing hydrogen pressure.

This content is only available via PDF.
You do not currently have access to this content.