Ni and Ni-W binary alloys are basis for nickel based superalloys. For most nickel based superalloys, strengthening mechanisms include both solid solution hardening and precipitation hardening. W is a vital element to create solid solution hardening and to improve the creep strength. In spite of its wide usage to strengthening of high temperature alloys, the mechanisms for solid solution hardening are not fully quantified. From the assumption that it is due to the attraction of solute atoms to dislocations and formation of Cottrell atmosphere to slow down the motion of dislocations, a fundamental model has been formulated previously. In the present paper, the model is expanded by taking the stacking fault energy and strain induced vacancies into account. Important parameters in the model are the variation of the lattice constant and the shear modulus with alloying content. Models for these variations have been formulated as a function of solute content. Another important parameter is the maximum interaction energy between the dislocations and the solutes. The model can satisfactorily predict both the large difference in creep rate between pure Ni and Ni-W alloys and the comparatively smaller differences between the three investigated Ni-2W, Ni-4W and Ni-6W alloys.

This content is only available via PDF.
You do not currently have access to this content.