The structural integrity of a reactor pressure vessel (RPV) is one of the most important issues for the operation of nuclear power plant. Nowadays, the probabilistic fracture mechanics (PFM) technique is widely used in evaluating the structural integrity of RPVs. However, the flaw characteristics used for PFM analysis are mainly derived from the Pressure Vessel Research User Facility (PVRUF) and Shoreham vessel inspection database, which may not be able to truly represent the vessel-specific condition of the analyzed RPV. In this work, the NUREG-2163 procedure which modifies the flaw characteristic parameters is employed. The Bayesian updating process which combines the prior flaw data with non-destructive examination (NDE) results as well as uncertainties is used to develop the posterior vessel-specific flaw distributions. Subsequently, the updated flaw files are used for PFM analysis to investigate the effects of NDE updated flaw characteristics on the fracture probability of RPV subjected to pressurized thermal shocks. Considering the updated flaws based on the NDE data, the analyzed results could be more plant-specific to predict the fracture risks of RPVs during operation.

This content is only available via PDF.
You do not currently have access to this content.