The coolant inside the supercritical water cooled pressure tube operates beyond the critical thermodynamics point of water, and the structure integrity of the pressure tube is of great important to the safety of reactor. Under the accident load, the difference in temperature along the pressure tube wall will cause relatively large thermal stress. Due to the generated high tensile stress, coupled with the internal high pressure load, the defects in the inner surface of the pressure tube may propagate rapidly and even through the wall thickness. This paper investigates the structure integrity of the supercritical water cooled pressure tube based on the deterministic and the probabilistic method of fracture mechanics, and obtains the stress intensity factor and the probabilistic function. It is found that the integrity of the supercritical pressure tube can be maintained from the fracture mechanics analysis under the accident load.

This content is only available via PDF.
You do not currently have access to this content.