To evaluate the structural integrity of nuclear power plant piping, it is important to predict ductile tearing of circumferential cracked pipe from the view point of Leak-Before-Break concept under seismic conditions. CRIEPI (Central Research Institute of Electric Power Industry) conducted fracture test on Japanese carbon steel (STS410) circumferential through-wall cracked pipes under monotonic or cyclic bending load in room temperature. Cyclic loading test conducted variable experimental conditions considering effect of stress ratio and amplitude. In the previous study, monotonic fracture pipe test was simulated by modified stress-strain ductile damage model determined by C(T) specimen fracture toughness test. And, ductile fracture of pipe under cyclic loading simulated using damage criteria based on fracture strain energy from C(T) specimen test data. In this study, monotonic pipe test result is applied to determination of damage model based on fracture strain energy, using finite element analysis, without C(T) specimen fracture toughness test. Ductile fracture of pipe under variable cyclic loading conditions simulates using determined fracture energy damage model from monotonic pipe test.

This content is only available via PDF.
You do not currently have access to this content.