It is the simplest and most feasible method to enhance heat transfer by replacing the smooth tube with various kinds of special-shaped enhanced tubes. In this paper, the characteristics of condensation and flow resistance inside horizontal corrugated low finned tubes were studied experimentally. The effects of steam inlet conditions and condensation tubes structural parameters were analyzed. The results showed that the heat transfer performance inside corrugated low finned tubes was greater than that inside smooth tubes. Like inside smooth tubes, the heat transfer coefficients increased with the vapor quality and steam mass flux. But the enhancement rate showed the opposite trend. And the heat transfer coefficients inside corrugated low finned tubes increased with the decrease of pitch and increase of protrusion height. Meanwhile, the variation trend of pressure drop gradient changing with inlet conditions and construal parameters was consistent with trend of heat transfer coefficient. The performance evaluation criteria were used to evaluate the comprehensive performance. It was found that the maximum performance evaluation factor was acquired at the minimum vapor quality and mass flux. The maximum value was 2.24 happened in the tube with pitch of 6 mm and height of 0.7mm. Finally, both the correlation for heat transfer coefficient and correlation for pressure drop gradient were developed by fitting experimental data. And this would provide calculation foundations for the design of horizontal condensers with corrugated low finned tubes.

This content is only available via PDF.
You do not currently have access to this content.