Metal to metal contact between joint surfaces is widely used in bolted joints to obtain a rigid and a high performance connection. However, a significant amount of clamping load is lost when the joint is subjected to mechanical and thermal loading including creep and fatigue. In practice, to prevent bolt loosening, additional parts such as spring washers, double nut, spring lock washers, Nyloc nut and so on are used. Those methods are costly and influence the stability of the joint and affect its structural integrity.

It is well established that a small compression displacement in clamping parts leads to a big clamping load loss in stiff joints. This paper discusses the relationship between connection stiffness and clamping load and presents a method that improves clamping load retention during operation by a careful design of the member contact surface shape. A single bolted joint with two clamping parts is modeled using finite element method (FEM). A method is proposed to obtain a specific stiffness by an optimized geometrical shape of the joint contact surfaces. The result shows that the contact surface shape based on a gradually varying gap can improve the retention of the initial clamping load. Furthermore, a formula of the connection stiffness based on the curve fitting technique is proposed to predict residual clamping load under different external load and loosening.

This content is only available via PDF.
You do not currently have access to this content.