Since the implementation of pressure-temperature (P-T) limit curves in the 1960s for light water reactors, the P-T limit curves have been based on the limiting locations in the reactor coolant system, which are typically the irradiated reactor pressure vessel (RPV) region adjacent to the core (beltline) and the closure head flange. Recently, it has been questioned as to whether the reactor vessel inlet or outlet nozzle corners could be more limiting due to the stress concentration at these locations. The discussion presented in this paper provides technical justification that the RPV nozzle corner P-T limit curves are bounded by the traditional P-T limit curves for the pressurized water reactors (PWRs).

The current approach in evaluating the Pressurized Water Reactor Inlet and Outlet nozzle corner regions with respect to plant heatup and cooldown Pressure Temperature Limit Curves contains a number of conservatisms. These conservatisms include postulation of a large 1/4T flaw at the nozzle corner region, use of RTNDT (reference nil-ductility temperature), and fracture toughness prediction based on plane strain fracture toughness. The paper herein discusses several factors that can be considered to improve the pressure temperature limit curves for nozzle corners and increase the operating window for nuclear power plant operations.

Prior to the 2013 edition, the ASME Section XI Appendix G did not require the use of a 1/4T flaw for the nozzle corners; furthermore, a smaller postulated flaw size is permissible. Based on inspection capability and experience, a smaller flaw size can easily be justified. The use of a smaller flaw size reduces the stress intensity factors and allows for the benefit of being able to take advantage of increased material toughness due to the loss of constraint at the nozzle corner geometry. The analysis herein considers the calculation of stress intensity factors for small postulated nozzle corner flaws based on a 3D finite element analysis for Westinghouse PWR inlet and outlet nozzle corner regions. The Finite Element Analysis (FEA) stress intensity factors along the crack front are used in the determination of allowable pressures for the cooldown transient Pressure-Temperature limit curves.

This content is only available via PDF.
You do not currently have access to this content.