ASME Nuclear Codes and Standards are used worldwide in the construction, inspection, and repair of commercial nuclear power plants. As the industry looks to the future of nuclear power and some of the new plant designs under development, there will be some significant departures from the current light water reactor (LWR) technology. Some examples are gas-cooled and liquid metal-cooled high temperature reactors (HTRs), small modular reactors (SMRs), and fusion energy devices that are currently under development. Many of these designs will have different safety challenges from the current LWR fleet.
Variations of the current LWR technology are also expected to remain in use for the foreseeable future. Worldwide, many LWRs are planned or are already under construction. However, technology for construction of these plants has advanced considerably since most of the current construction codes were written. As a result, many modern design and fabrication methods available today, which provide both safety and economic benefits, cannot be fully utilized since they are not addressed by Code rules.
For ASME Nuclear Codes and Standards to maintain and enhance their position as the worldwide leader in the nuclear power industry, they will need to be modernized to address these items. Accordingly, the ASME Nuclear Codes and Standards organizations have initiated the “2025 Nuclear Code” initiative. The purpose of this initiative is to modernize all aspects of ASME’s Nuclear Codes and Standards to adopt new technologies in plant design, construction, and life cycle management. Examples include modernized finite element analysis and fatigue rules, and incorporation of probabilistic and risk-informed methodology. This paper will present the vision for the 2025 ASME Nuclear Codes and Standards and will discuss some of the key elements that are being considered.