As a further extension to the structural strain method first introduced by Dong et al [1], this paper presents an enhanced structural strain method which incorporates material nonlinearity and for two typical weld structures, i.e. weldment with plate sections (e.g. gusset weld or cruciform weld etc.) and weldment with beam sections. (e.g. pipe structures). A modified Ramberg-Osgood is introduced to capture nonlinear stress strain behavior of the material. A set of numerical algorithms is used to deal with complex stress state induced by structural effect such as beam section and plane strain condition. The proposed structural strain method is then applied to analysis of fatigue data of weldment made from different materials including steel, aluminum and titanium. It is shown that the enhanced structural strain method provides a unified way to correlate fatigue life of weldment in both high cycle and low cycle fatigue regime. The method is also used to study ratcheting problem raised up by Bree. A modified Bree diagram is given by considering material nonlinearity.

This content is only available via PDF.
You do not currently have access to this content.