Structural health monitoring of reinforced concrete (RC) structures under seismic loads have recently attracted dramatic attention in the earthquake engineering research community. In this study, reversed cyclic loading test of structural health monitoring of RC shear walls using piezoceramic (PZT)-based sensors are presented. The piezoceramic-based sensors called “smart aggregate (SA)”, was pre-embedded before casting of concrete and adopted for the structural health monitoring of the RC shear wall under seismic loading. Two RC walls were adopted in this test, one is the wall having damages in the boundary columns and foundation of the specimen, and the other is the wall having damages in the upper part of the wall panel. During the test, SAs embedded in the foundation were used as actuators to generate propagating waves, and the other selected SAs were used to detect the waves. By analyzing the wave response, the existence and locations of cracks and damages can be detected and the severity can be estimated. The experimental results demonstrate the sensitiveness and the effectiveness of the piezoceramic-based approach in the structural health monitoring and the identification of damage locations of shear governed concrete structures under seismic loading.

This content is only available via PDF.
You do not currently have access to this content.