Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that transport casks meet the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. It is required that the mechanical tests have to produce maximum damage, taking into account the thermal test. Furthermore, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. Concerning the thermal test, the IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally.
Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur caused by smoldering of the wood. This effect should be considered within the safety assessment of the package. A heat wave from the fire could overlap with the additional energy from the impact limiter in the sealing system. In 2015 BAM conducted small scale fire tests with wood filled metal drums showing continuing combustion processes during the cooling down phase. As not much is known about smoldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the most damaging energy flow from the impact limiter to the containment system in dependence of time. More research has to be done to develop models to examine the effects of smoldering impact limiters on the containment of packages for the assessment. The process of smoldering is described with regard to the requirements in the thermal safety assessment. Parameters influencing the smoldering process are identified.
BAM operates test facilities to examine the issue of mechanical damage, combustion and heat transfer of packages for transport of radioactive material. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smoldering under the consideration of relevant regulatory boundary conditions.