Reliability analysis considering data uncertainties can be used to make a rational decision as to whether to run or repair a pressure equipment that contains a flaw. Especially, partial safety factors (PSF) method is one of the most useful reliability analysis procedure and considered in a Level 3 assessment of a crack-like flaw in API 579-1/ASME FFS-1:2016. High Pressure Institute of Japan (HPI) formed a committee to develop a HPI FFS standard including PSF method. To apply the PSF method effectively, the safety factors for each dominant variable should be prepared before the assessment. In this paper, PSF for metal loss assessment of typical pressure vessels are derived based on first order reliability method (FORM). First, a limit state function and stochastic properties of random variables are defined. The properties of a typical pressure vessel are based on actual data of towers in petroleum and petrochemical plants. Second, probability of failure in several cases are studied by Hasofer-Lind method. Finally, PSF’s in each target probability of failure are proposed. HPI published a new technical report, HPIS Z 109 TR:2016, that provide metal loss assessment procedures based on FORM and the proposed PSF’s described in this paper.

This content is only available via PDF.
You do not currently have access to this content.