X65 steel pipes internally clad with Alloy 625 used in subsea oil extraction are normally welded together with Alloy 625 filler metal. For pipe reeling applications, DNV-OS-F101 requires pipe girth welds to overmatch base metal yield strength with 100 MPa. Since Alloy 625 filler metal does not meet this requirement, Ni-base super alloys 718 and 282 were considered as potential welding consumables for reeling applications.

The solidification behavior in weld metal of these alloys diluted with Alloy 625 pipe ID cladding was evaluated using thermodynamic simulations. The response to precipitation hardening by multiple reheat cycles was studied by producing multilayer buildups with cold metal transfer (CMT) and pulsed gas metal arc welding (GMAWp) processes. Weld buildup of Alloy 718 exhibited insufficient hardening response and yield strength, while Alloy 282 met the DNV overmatch requirement. Successful narrow groove welding of X65 pipes with Alloy 282 was performed using CMT process. Welding parameter optimization allowed resolving centerline solidification cracking and lack of fusion defects. The weld metal yield strength was lower than in the multipass buildup, which was attributed to lower number of reheats in groove welding. Meeting the overmatch requirement for yield strength in Alloy 282 groove welds requires further parameter optimization.

This content is only available via PDF.
You do not currently have access to this content.