Autofrettage is used to known as an effective method to prevent fatigue crack propagation of thick-walled cylinder vessels operating under high pressure. Since low-alloy steel shows an enhanced crack growth rate in high-pressure gaseous hydrogen, this paper aims to validate the effect of autofrettage on crack growth behavior in high-pressure gaseous hydrogen utilizing 4%NiCrMoV steel (SA723 Gr3 Class2). An autofrettaged cylindrical specimen with a 70mm inside diameter and 111mm outside diameter was prepared with an axial EDM (depth of 1mm) notched on the inside surface. The measured residual stress profile coincides well with the calculated results. The fatigue crack growth test was conducted by pressurizing the cylinder and varying the external water pressure. Crack propagation from the EDM notch was observed in the non-autofrettaged cylindrical specimen while no crack propagation was observed when the initial EDM notch size was within the compressive residual stress field. When the initial EDM notch size was increased, the fatigue crack growth showed a narrow, groove-like fracture surface for the autofrettaged specimen. In order to qualitatively analyze those results, fatigue crack growth rates were examined under various load ratios including a negative load ratio using a fracture mechanics specimen. From the information obtained, crack growth analysis of an autofrettaged cylinder in a high-pressure hydrogen environment was successfully demonstrated with a fracture mechanics approach.

This content is only available via PDF.
You do not currently have access to this content.