Dissimilar metal nozzle-to-safe end welds represent a complex manufacturing operation for nuclear reactor fabrication. Transitioning from a low alloy steel nozzle to corrosion-resistant reactor coolant system piping systems requires weld buttering, an intermediate heat treatment, and a dissimilar metal weld between the nozzle buttering and safe-end. The process can be both time consuming and costly, and often provides difficulties for inspection of welds in the field. Through the use of powder metallurgy and hot isostatic pressing (PM-HIP), a series of transition joint configurations have been evaluated that could reduce the complexity of nozzle-to-safe end fabrication by eliminating fusion welding from the process.

Test coupons of SA508 low alloy steel have been joined via PM-HIP to either 316L SS or 347NG SS using various powder metal interlayer materials (Alloy 82, Nb-modified Alloy 600 (600M), Alloy 690, and 316L SS). The microstructural evolution and mechanical performance of the joints have been evaluated following a post-HIP solution anneal, quench and temper heat treatment. Particular attention was given to evaluating bond-line regions via Charpy V-notch impact testing, tensile testing, microhardness, optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Results demonstrate that multiple transition layer configurations are capable of meeting the acceptable tensile and impact energy specifications of the two parent base material substrates. Interface impact toughness and ductility were dependent upon secondary phase precipitation within the diffusion region of the joints and presence of non-metallic inclusions. This assessment demonstrates that acceptable joint performance is achievable through proper material selection and should be considered for DMW applications in the future.

This content is only available via PDF.
You do not currently have access to this content.