Current industry standards cite depth and interaction with additional stress risers as the key indicators of pipeline integrity concerns in regards to dents. There have been significant efforts towards the improvement of these benchmarks in recent years. Several dent assessment methods are presented in literature, including research focused on the use of finite element analysis (FEA). The accurate assessment of dents using FEA is heavily reliant on how close the shape produced by the FEA model aligns with the shape of the actual dent. The research presented in this paper has been conducted to evaluate the sensitivity of the stresses and strains to the dent profile shape.

Information regarding the existence, shape, and size of dents is typically provided by in-line inspection (ILI) tools. An FEA model is then built in commercially available software, ABAQUS, to create a dent profile that closely resembles the profile given by the ILI. The study in this paper assesses the effect of different indenter sizes on the stresses and strains within the dent and provides a recommendation to quantify the error between the ILI and FEA profiles. The process of matching a dent profile using FEA is compared to an existing analytical method to calculate strain, the equations proposed in ASME B31.8. The FEA results were found to be more conservative than the strains calculated using ASME B31.8.

This content is only available via PDF.
You do not currently have access to this content.