The core of any nuclear reactor presents a particularly harsh environment for sensors and instrumentations. The reactor core also imposes challenging constraints on signal transmission from inside the reactor core to outside of the reactor vessel. In this paper, an acoustic measurement infrastructure installed at the Advanced Test Reactor (ATR), located at Idaho National Laboratory, is presented. The measurement infrastructure consists of ATR in-pile structural components, coolant, acoustic receivers, primary coolant pumps, a data-acquisition system, and signal processing algorithms. Intrinsic and cyclic acoustic signals generated by the operation of the primary coolant pumps are collected and processed. The characteristics of the intrinsic signal can indicate the process state of the ATR (such as reactor startup, reactor criticality, reactor attaining maximum power, and reactor shutdown) during operation (i.e., real-time measurement). This paper demonstrated different in acoustic signature of the ATR under different operating conditions. In particular, ATR acoustic baseline is captured during typical operation cycle and during power axial locator mechanism operation cycle. The difference in two acoustic baseline is significant and highlights salient difference that are critical in the design and development of acoustically telemetered sensors.

This content is only available via PDF.
You do not currently have access to this content.