This paper proposes Piping Code rules to address the effects of hydrogen deflagrations inside piping. Previous work proposed a set of criteria for piping subject to detonation loading [PVP2012-78519, PVP2012-78525]. This paper provides criteria to evaluate the effect of deflagrations, which typically have a slower rise time and lower energy, inside the piping. These deflagration criteria, coupled with the previously cited detonation criteria, are being used at the Hanford Tank Waste Treatment and Immobilization Plant to evaluate piping systems subject to hydrogen accumulation.

The previous papers did not investigate or propose criteria for deflagrations, as these were known to have lower pressures and slower pressure rise times, but are still of some significance for piping design. Recent work has shown that there exists a scenario in which the deflagration loading may be very significant: deflagrations in small gas pockets surrounded by large waste slugs. Depending on the assumptions used to develop the loading, the unbalanced forces on piping segments in a long piping system can become high during a deflagration event. Thus, for the set of criteria chosen for deflagration, the deflagration event may become the limiting event, especially if it is the more frequent event. The criteria proposed need to recognize this scenario and guide the user to possible solutions. This paper presents the original methodology for evaluating these “slug” events, briefly discusses the recent testing and theory being pursued to reduce the effect of the loading [PVP2015-45970, PVP2016-63260, PVP2016-63262], and then proposes criteria for evaluating deflagration induced stresses and loads.

This content is only available via PDF.
You do not currently have access to this content.