The focus of this paper is on gaseous deflagration in piping systems and the corresponding implications on piping analysis and design. Unlike stable detonations that propagate at a constant speed and whose pressure-time histories can in some cases be predicted analytically, deflagration flame speeds and pressure-time histories are transient and depend on both the gas mixture and geometry of the pipe. This paper presents pressure and pipe strain data from gaseous deflagration experiments in long and short test apparatuses fabricated from either 2-inch or 4-inch diameter pipes. These data are used to demonstrate a spectrum of measured pressure-time histories and corresponding pipe response. It is concluded that deflagrations can be categorized as either “high” or “slow” speed with respect to pipe response. Slow deflagrations can be treated as quasi-static pressurizations, but high speed deflagrations can generate shock waves that dynamically excite the pipe.

The existence of a transition from quasi-static to dynamic response has ramifications in regards to piping structural analysis and design, and a method for predicting the expected deflagration structural response using a semi-empirical flame acceleration model is proposed.

This content is only available via PDF.
You do not currently have access to this content.