Flow-induced acoustic resonances in piping with closed side branches or T-junctions are one of the causes of severe structural vibrations, which sometimes cause fatigue damage to piping and components in a power plant and many engineering applications. In this paper, on the basis of the results of steam flow experiments and calculations, the effects of the liquid phase on the flow-induced acoustic resonance at closed side branches in the steam flow piping of BWRs are described, and some suggestions for the steam piping design of BWRs are also given. The liquid phase in a steam flow forms droplets or liquid film, which may affect the amplitude, frequency and critical Strouhal number of the resonance. From the results of wet steam experiments and CFD calculations, we have found that in some cases the wetness of the steam flow may decrease the resonant amplitude and change the frequency owing to the interaction of the vortex generation or damping by the existence of the liquid film and droplets. Therefore, for the wet steam piping design of BWR, some suggestions for taking these effects into consideration, under actual BWR steam conditions are described.

This content is only available via PDF.
You do not currently have access to this content.