Japan Atomic Energy Agency is now conducting design study and R&D of an advanced loop-type sodium cooled fast reactor. The cooling system is planned to be simplified by employing a two-loop configuration and shortened piping with less elbows than a prototype fast reactor in Japan, Monju, in order to reduce construction costs and enhance economic performance. The design, however, increases flow velocity in the hot-leg piping and induces large flow turbulence around elbows. Therefore, flow-induced vibration (FIV) of a hot-leg piping is one of main concerns in the design. Numerical simulation is a useful method to deal with such a complex phenomenon. We have been developing numerical analysis models of the hot-leg piping using Unsteady Reynolds Averaged Navier-Stokes simulation with Reynolds stress model. In this study, numerical simulation of a 1/3 scaled-model of the hot-leg piping was conducted. The results such as velocity profiles and power spectral densities (PSD) of pressure fluctuations were compared with experiment ones. The simulated PSD of pressure fluctuation at the recirculation region agreed well with the experiment, but it was found some underestimation at other parts, especially in relatively high frequency range. Eigenvalue vibration analysis was also conducted using a finite element method. Then, stress induced by FIV was evaluated using pressure fluctuation data calculated by URANS simulation. The calculated stress generally agrees well the measurement values, which indicates the importance of precise evaluation of the PSD of pressure fluctuation at the recirculation region for evaluation of FIV of the hot-leg piping with a short elbow.

This content is only available via PDF.
You do not currently have access to this content.