Nozzle repair is one of the common repair methods for oil and gas pipelines. As a means to test the applicability of the pipeline, the pressure test is widely used in the integrity evaluation of oil and gas pipelines. To avoid possible failure accidents of nozzle repair pipeline, hydrostatic burst tests were performed. The finite element model of the pipeline was established. The effects of nozzle diameter and nozzle wall thickness parameters on the stress-strain response of the nozzle repair pipeline were discussed. The results show that the yield stress of the specimen is about 11.2MPa, and the blasting pressure is 12.9MPa. Due to the effect of nozzle structure, the change of strain for each point with the internal pressure is inconsistent. The ratio of axial strain to circumferential strain decreases with the increase of pressure, which shows that the yield mainly occurs in the hoop direction, and the axial deformation increases with the increase of the pressure. Under the condition of the_constant wall thickness, the stress distribution of pipeline is uniform and the yield pressure increases with the decrease of nozzle diameter. The smaller the nozzle diameter, the better the bearing capacity. The selection for the wall thickness of nozzle should be greater than or equal to the thickness of the pipe wall.

This content is only available via PDF.
You do not currently have access to this content.