The European Standard EN 1591-1 is used for the calculation of bolted flanged joints, stress analysis as well as for tightness proofs. In this calculation procedure gasket characteristics according to EN 13555 are used to describe the mechanical and the tightening behavior of gasket materials.
With further developments in the calculation algorithm and the use of the realistic gasket behavior in the calculation more detailed results can be obtained, which are comparable to results obtained from Finite Element Analysis. The flange rotation and the resulting uneven gasket stress distribution in the radial direction during the assembly of the flanged joint is the fundamental principle in this development. The effective compressed gasket width has influence on the required gasket forces for the tightness proof as well as on the mechanical behavior of the flanged joint, and thus also on the stress analysis.
In this paper, the determination of the effective gasket width using a newly developed approach [1] is optimized and the verification of this approach with Finite Element Analysis for several different gasket materials and flange geometries is shown.