The Simplified Model Test (SMT) is an alternative approach to determine cyclic life at elevated temperature and avoids parsing the damage into creep and fatigue components. The Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach incorporates the SMT data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and to eliminate the requirement for stress classification as in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The conceptual basis of the SMT approach is that if the effects of plasticity, creep and strain redistribution in the SMT specimen result in a stress-strain hysteresis loop that envelopes the hysteresis loop at the peak strain location in the component, then the SMT results can be used to assess the cyclic damage in the component.
The original SMT concept (Jetter, 1998) considered that the effects of sustained primary stress loading could be safely neglected because the allowable local stress and strain levels were much higher than the allowable sustained primary stress levels. This key assumption requires experimental verification. The influence of the internal pressure on SMT creep-fatigue life is demonstrated and the effect of primary load on the SMT design approach is discussed.