A partially buried fixed-base finite element model of a typical safety-related nuclear structure is analyzed for earthquake loads by the time history method, the response spectrum method, and the equivalent static load method. The spectra-consistent artificial time histories are generated with seed time histories in accordance with Standard Review Plan 3.7.1: Seismic Design Parameters [1] with target spectra based on Regulatory Guide 1.60: Design Response Spectra for Seismic Design of Nuclear Power Plants [2]. The response spectrum analyses are performed with the same target spectra used in generating the artificial time histories. The equivalent static loads are based on the nodal zero period accelerations from the fixed-base time history analyses. The seismic responses in a column in the structure are combined using algebraic sum, square root of the sum of the squares (SRSS), and the 100-40-40 rule in accordance with Regulatory Guide 1.92: Combining modal responses and spatial components in seismic response analysis [3]. The equivalent static load method is applied according to ASCE 4-15: Seismic Analysis of Safety-Related Nuclear Structures [4]. The resulting design forces and required reinforcement for a column in the structure are compared for each method along with the corresponding computational demand.

This content is only available via PDF.
You do not currently have access to this content.