The presence of high magnitude residual stresses in welded components causes material degradation, local yielding and plastic deformation. Their presence provides the potential for premature failure and compromises the integrity of a structure. This paper presents a review of work carried out to ascertain the residual stresses present within T-section specimens, made from ferritic steel, in their as-welded condition. The standard and incremental deep hole drilling (DHD and iDHD) techniques, the neutron diffraction (ND) and the contour method were applied to characterise the residual stresses in the regions in and around the two fillet welds of the specimens and the surrounding parent material within which the balancing residual stresses needed to be measured. The results of these measurements are presented and compared to highlight agreements and discrepancies in the measured residual stress distributions using these different techniques. A compendium of measurements at a similar location in various T-sections and their comparison with the BS7910 standard show that the measured longitudinal distributions are similar despite the observed scatter. Finally, this paper briefly attempts to investigate and discuss the technical challenges identified when applying the contour method to complex geometry components. The constraint of the specimen during the wire electro-discharge machining (EDM) process, the quality of the wire EDM cut made and the analysis of the raw data for the conversion into residual stresses directly affect the accuracy of the contour method results. The identification and investigation of these challenges lead to continuous improvements of the contour method procedure and reduce uncertainties of the measurement.

This content is only available via PDF.
You do not currently have access to this content.