Fracture toughness is often described by the J-integral or crack-tip opening displacement (CTOD) for ductile materials. ASTM, BSI and ISO have developed their own standard test methods for measuring fracture initiation toughness and resistance curves in terms of the J and CTOD using bending dominant specimens in high constraint conditions. However, most actual cracks are in low constraint conditions, and the standard resistance curves may be overly conservative.

To obtain more realistic fracture toughness for actual cracks in low-constraint conditions, different fracture test methods have been developed in the past decades. To facilitate understanding and use the test standards, this paper presents a critical review on commonly used fracture toughness test methods using standard and non-standard specimens in reference to the fracture parameters J and CTOD, including (1) ASTM, BSI and ISO standard test methods, (2) constraint correction methods for formulating a constraint-dependent resistance curve, and (3) direct test methods using the single edge-notched tension (SENT) specimen. This review discusses basic concepts, basic methods, estimation equations, test procedures, historical efforts and recent progresses.

This content is only available via PDF.
You do not currently have access to this content.