A postulated surface crack near a reactor pressure vessel nozzle is evaluated using finite element analysis (FEA) to compute the fatigue crack growth rate, evaluate crack stability, and examine the possibility of a leak-before-break (LBB) condition. For a pressurized vessel with cyclic loading, determining if the crack may have a LBB condition is desirable to allow for the possibility of leak detection leading to corrective action before catastrophic failure.

A fatigue crack growth analysis is used to determine how the surface crack dimensions develop before re-categorizing the surface crack as a through thickness crack and evaluating its stability for LBB. To evaluate if a particular crack is unstable and may cause a structural failure, the Failure Assessment Diagram (FAD) method provides an evaluation using two ratios: brittle fracture and plastic collapse. The FAD method is described in the engineering best practice standard API 579-1/ASME FFS-1. The FAD curve and assessment ratios can be obtained from crack front J-integral values, which are computed using 3D crack meshes and elastic and elastic-plastic FEA. Computing custom crack solutions is beneficial when structural component geometries do not have an available stress intensity or reference stress solution.

This content is only available via PDF.
You do not currently have access to this content.