Based on detailed 3D finite element (FE) analyses, idealized and non-idealized axial through-wall flaws were evaluated in a cylinder under internal pressure. The key parameters (Stress Intensity Factor, Reference stress, and Crack Opening Area) from widely accepted structural integrity assessment procedures (BS 7910 and API 579-1/ASME FFS-1) were explored and compared between idealized (perpendicular straight-sided flaw) and non-idealized geometry. The effect of crack shape on the evolution of stress intensity factors and crack opening areas along the crack front were also investigated. Non-idealized crack shapes have been modelled assuming a straight crack front with different internal and external crack lengths. The influence of crack shape has been evaluated by varying the crack front location and lengths ratios. The current findings highlight the significance of assessing a more realistic crack shape and should be considered in a leak-before-break (LBB) analysis. A non-idealized crack has a significantly smaller crack opening area than the equivalent idealized through-wall crack. Therefore the leakage rate at this stage of crack growth will be lower than predicted by standard solutions. Stress intensity factor solutions should also take the crack shape variation into account with regards to fatigue crack growth as a surface flaw propagates through-thickness.

This content is only available via PDF.
You do not currently have access to this content.