Intergranular creep cracks have been observed in the heat affected zone of the 316H austenitic stainless steel superheater boiler tube bifurcation weldments after long term service at temperature of ∼550°C. The cracking mechanism is believed to be creep dominated. Moreover, chemical composition of defective material compared with similar uncracked components suggests that composition influences susceptibility to creep cracking. A systematic characterization of ratios number of creep cavities/grain boundary length and inter-granular precipitation length/grain boundary length has been undertaken in HAZ of three samples extracted from plants with different specific compositions. Here, the role of precipitation on creep deformation and fracture is explored. Precipitates of both ferrite and M23C6 carbide arising from long term service and associated creep cavitation have been identified using transmission electron microscopy. The creep damage and cracking, and therefore overall service life creep, is discussed by consideration of susceptibility of creep cavity nucleation and subsequently growth arising from specific differences in the chemical composition of the three boiler tube bifurcations.

This content is only available via PDF.
You do not currently have access to this content.