This paper proposes the assessment method of complex cracked pipes. Complex crack is the form of crack existing through-wall crack and surface crack at the same time [1–2]. Complex crack is mainly caused by PWSCC phenomenon in pipe with overlay maintenance welding. At first, circumferential surface crack is developed by PWSCC phenomenon in the weakest point which is nickel alloy welding point. And this crack propagates to axisymmetric crack in inner surface. After that the crack initiates in not only pipe part but also overlay maintenance welding part, complex crack shape which is main subject in this paper is formed. Unlike through-wall cracked pipes or surface cracked pipes, complex cracked pipes have a complex behavior because of combining through-wall crack behaviors and surface crack behaviors in cracked part. So calculating J-integral and defining amount of crack growth of complex cracked pipes are more difficult than those of through-wall cracked pipes and surface cracked pipes. Therefore, in this paper, the concept using equivalent pipe is proposed for assessment method of complex cracked pipes. To determine equivalent pipe, maximum loads of various through-wall cracked pipes having same circumferential crack size and different thickness are calculated. The reason why through-wall cracked pipe is selected for equivalent pipe is that many researches about J-integral and crack growth of through-wall cracked pipes are already performed and those results are sufficiently validated. In addition, it can be not only directly utilized procedure of leak before break assessment but also compared previous research results using only through-wall cracked part in complex cracked pipes referred to reduced thickness method. Maximum loads of complex cracked pipes and through-wall cracked pipes are calculated using stress-modified fracture strain model in finite element analysis [3–6]. This model is technics removing load bearing capacity in elements which satisfy damage criteria. Damage criteria is determined by using tensile experiment results, fracture toughness experiment results and validated by comparing with real size pipe experiment results. All the experiment results are in pipe fracture encyclopedia published by Battelle [7]. The experiments utilized in the paper are performed in operating temperature 288°C and materials of pipes are stainless steel SA376 TP304 and carbon steel A106 Gr.B. Finally, the results of equivalent through-wall cracked pipe thickness are provided.
Skip Nav Destination
ASME 2016 Pressure Vessels and Piping Conference
July 17–21, 2016
Vancouver, British Columbia, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-5042-8
PROCEEDINGS PAPER
Assessment Method for Complex Cracked Pipe Using Equivalent Pipe Concept
Kyung-Dong Bae,
Kyung-Dong Bae
Korea University, Seoul, Korea
Search for other works by this author on:
Seung-Jae Kim,
Seung-Jae Kim
Korea University, Seoul, Korea
Search for other works by this author on:
Yun-Jae Kim
Yun-Jae Kim
Korea University, Seoul, Korea
Search for other works by this author on:
Kyung-Dong Bae
Korea University, Seoul, Korea
Ho-Wan Ryu
Korea University, Seoul, Korea
Seung-Jae Kim
Korea University, Seoul, Korea
Hyun-Suk Nam
Korea University, Seoul, Korea
Yun-Jae Kim
Korea University, Seoul, Korea
Paper No:
PVP2016-63427, V06AT06A007; 8 pages
Published Online:
December 1, 2016
Citation
Bae, K, Ryu, H, Kim, S, Nam, H, & Kim, Y. "Assessment Method for Complex Cracked Pipe Using Equivalent Pipe Concept." Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Volume 6A: Materials and Fabrication. Vancouver, British Columbia, Canada. July 17–21, 2016. V06AT06A007. ASME. https://doi.org/10.1115/PVP2016-63427
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Estimates of Mechanical Properties and Residual Stress of Narrow Gap Weld for Leak-Before-Break Application to Nuclear Piping
J. Pressure Vessel Technol (April,2011)
A Combination Rule for Circumferential Surface Cracks on Pipe Under Tension Based on Limit Load Analysis
J. Pressure Vessel Technol (April,2011)
Modeling Studies to Predict Stresses in Composite Floor Tubes of Black Liquor Recovery Boilers
J. Eng. Mater. Technol (July,2001)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Overview of Section XI Stipulations
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 2, Third Edition
Subsection NE—Class MC Components
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition