During autofrettage, pressure vessels are subjected to high internal pressure, causing the internal wall to yield plastically. When the internal pressure is released, the inner wall of the vessel develops compressive residual stress. Similarly, when a subsea component is hydrotested, some of the highly stressed regions yield during hydrotesting and, when the pressure is released, these regions develop compressive residual stress. Fatigue life is greatly influenced by local stress on the component surface. Fatigue crack initiation primarily depends on the cyclic stress or strain and the residual stress state. Tensile residual stress decreases fatigue life and the compressive residual stress significantly increases fatigue life. This is true for both fatigue crack initiation and propagation.

In this paper, effects of residual stress on a notched plate are studied by subjecting it to an initial overload cycle and subsequent low loading cycles. Tensile and compressive overloads on the notched plate induce compressive and tensile residual stresses, respectively. An elastic-plastic finite element analysis (FEA) was performed to simulate the overload and low loading cycles on the notched plate. The stress and strain from the FEA is used to perform strain-based fatigue analysis. ASME VIII-3, Brown-Miller (B-M), Maximum shear strain, Socie-Bannantine, and Fatemi-Socie methods are used for calculating the fatigue life of the notched plate. Fatigue life predicted by both stress and strain methods matches well with the test fatigue data.

This content is only available via PDF.
You do not currently have access to this content.