In the recent past (PVP2013-97677, PVP2014-28197, PVP2015-45286) we had started to determine the static equivalent pressures pstat of the eight detonative pressure scenarios in long and short pipes for different detonable gas mixtures. The pstat-values are of vital importance for process design: by assigning static equivalent pressures to the highly dynamic detonative pressure peaks it is possible to apply the established pressure vessel guidelines, which can only cope with static loads, for the design of detonation pressure resistant pipes. One important finding was that the ratio R between pstat at the location where transition from deflagration to detonation occurs and pstat in the region of the stable detonation strongly depends on the reactivity of the gas mixture. In this paper we present experimental data showing the variation of R over the entire explosive range of Methane/O2/N2 mixtures. Qualitatively, the results should be representative for all other combustible/O2/N2-mixtures. Furthermore, recommendations for estimating pstat values of short pipe scenarios on basis of the long pipe scenarios are given.

This content is only available via PDF.
You do not currently have access to this content.