Bolted pipe flange connections with metallic gaskets have been used under higher pressure as well as higher temperature. However, a few researches on the mechanical characteristics in connections with metallic gaskets have been carried out. It is necessary to examine the mechanical characteristics such as the contact gasket stress distributions which govern the sealing performance, the deformation of the metallic gaskets, changes in axial bolt forces and the hub stress under higher pressure and temperature. In the present paper, the objectives are to examine the changes in axial bolt forces, the hub stress and the contact gasket stress distributions and the sealing performance of the pipe flange connections with metallic flat gaskets. Firstly, the mechanical characteristics of the connections under higher pressure are analyzed using FEA. Then, experiments were carried out to measure the load factor, the hub stress and the leak rate (the sealing performance). The relationship between the average contact gasket stress and the leak rate was measured using platen device at room temperature. The FEA results are fairly coincided with the experimental results. It is shown that the leak rate decreases as the contact gasket stress increases and when the plastic deformation of gaskets occurs, the sealing performance increases. The leak rate was measured in the range of 10−4∼10−7 [Pa·m3/s]. It is found that the sealing performance increases as the gasket width increase in the elastic deformation range while it is independent of the gasket width when the plastic deformation occurs. The effect of temperature on the mechanical characteristics of the connection is also examined. The FEA results are in a fairly good agreement with the experimental results. It is found that the sealing performance increases as the temperature increases. In addition, a method how to determine the bolt preload for increasing the sealing performance is proposed.

This content is only available via PDF.
You do not currently have access to this content.