In the nuclear industry, demands on the structural integrity reliability of metal components are always increasing. The quantification of allowable defects in pressure vessels should therefore draw on advanced structural integrity assessment procedures. In the UK, R6 [1] is the main procedures used for defect tolerance assessment (DTA). In this paper, the overall evaluation procedure of DTA using R6 applied to the Main Steam (MS) nozzle crotch corner of the Advanced Boiling Water Reactor (ABWR) is presented. At the nozzle crotch corner region, high stresses, including through-wall bending stresses from the local structural discontinuity, were present. These bending stresses have been categorised as secondary. R6 conservatively implies such bending stresses may need to be categorised as primary, to allow for the possibility of elastic follow-up. To support application as a secondary stress, an elastic-plastic finite element analysis has been performed to evaluate the J-integral for the nozzle crotch corner. The resulting values of J, when compared to the stress intensity factor and collapse solutions used for the assessment, showed that treating the bending stress as secondary maintained sufficient margin, indicating conservatism. Finally, the DTA results of the nozzle crotch corner are presented to determine the defect tolerance criteria. This includes calculating the limiting defect size at the start of plant life when considering the end of life critical defect size and through life Fatigue Crack Growth (FCG).

This content is only available via PDF.
You do not currently have access to this content.