Non-planar flaw such as local wall thinning flaw is a major piping degradation in nuclear power plants. Hundreds of piping components are inspected and evaluated for pipe wall loss due to flow accelerated corrosion and microbiological corrosion during a typical scheduled refueling outage. The evaluation is typically based on the original code rules for design and construction, and so often that uniformly thin pipe cross section is conservatively assumed. Code Case N-597-2 of ASME B&PV, Section XI Code provides a simplified methodology for local pipe wall thinning evaluation to meet the construction Code requirements for pressure and moment loading. However, it is desirable to develop a methodology for evaluating non-planar flaws that consistent with the Section XI flaw evaluation methodology for operating plants. From the results of recent studies and experimental data, it is reasonable to suggest that the Section XI, Appendix C net section collapse load approach can be used for non-planar flaws in carbon steel piping with an appropriate load multiplier factor. Local strain at non-planar flaws in carbon steel piping may reach a strain instability prior to net section collapse. As load increase, necking starting at onset strain instability leads to crack initiation, coalescence and fracture. Thus, by limiting local strain to material onset strain instability, a load multiplier factor can be developed for evaluating non-planar flaws in carbon steel piping using limit load methodology. In this paper, onset strain instability, which is material strain at the ultimate stress from available tensile test data, is correlated with the material minimum specified elongation for developing a load factor of non-planar flaws in various carbon steel piping subjected to multiaxial loading.
Skip Nav Destination
ASME 2016 Pressure Vessels and Piping Conference
July 17–21, 2016
Vancouver, British Columbia, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-5036-7
PROCEEDINGS PAPER
Load Factor for Evaluating Non-Planar Flaws in Carbon Steel Piping Using Limit Load Methodology
Phuong H. Hoang
Phuong H. Hoang
Sargent & Lundy LLC, Chicago, IL
Search for other works by this author on:
Phuong H. Hoang
Sargent & Lundy LLC, Chicago, IL
Paper No:
PVP2016-63973, V01BT01A002; 10 pages
Published Online:
December 1, 2016
Citation
Hoang, PH. "Load Factor for Evaluating Non-Planar Flaws in Carbon Steel Piping Using Limit Load Methodology." Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Volume 1B: Codes and Standards. Vancouver, British Columbia, Canada. July 17–21, 2016. V01BT01A002. ASME. https://doi.org/10.1115/PVP2016-63973
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Formability of Al 5xxx Sheet Metals Using Pulsed Current for Various Heat Treatments
J. Manuf. Sci. Eng (October,2010)
Analysis of the Bridgman Procedure to Characterize the Mechanical Behavior of Materials in the Tensile Test: Experiments and Simulation
J. Appl. Mech (January,2005)
Initiation and Propagation of Stress-Assisted Corrosion (SAC) Cracks in Carbon Steel Boiler Tubes
J. Eng. Mater. Technol (October,2007)
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Subsection NB—Class 1 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition