Fatigue design curve construction is commonly used for durability and reliability assessment of engineering components subjected to cyclic loading. A wide variety of design curve construction methods have been developed over the last decades. Some of the methods have been adopted by engineering codes and widely used in industry. However, the traditional design curve construction methods usually require significant amounts of test data in order for the constructed design curves to be consistently and reliably used in product design and validation. In order to reduce the test sample size and associated testing time and cost, several Bayesian statistics based design curve construction methods have been recently successfully developed by several research groups. Among all of these methods, an efficient Monte Carlo simulation based resampling method developed by the authors of this paper is of particular importance. The method is based on a large amount of reliable historical fatigue test data, the associated probabilistic distributions of the mean and standard deviation of the failure cycles, and an advanced acceptance-rejection resampling algorithm. However, finite element analysis (FEA) methods and a special stress recovery technique are required to process the test data, which is usually a time-consuming process. A more straightforward approach that does not require these intermediate processes is strongly preferred.
This study presents such an approach, in which the only historical information needed is the distribution of the standard deviation of the cycles to failure. The distribution of the mean is directly calculated from the current tested data and the Central Limit Theorem. Neither FEA nor stress recovery technique is required for this approach, and the effort put into design curve construction can be significantly reduced. This method can be used to complement the previously developed Bayesian methods.