Pressurized thermal shock (PTS) is a potential major threat to the structural integrity of the reactor pressure vessel (RPV) in a nuclear power plant. A comprehensive structural integrity analysis of the Chinese Qinshan 300-MWe RPV subjected to PTS events including the small break loss-of-coolant accident (SB-LOCA) and large break loss-of-coolant accident (LB-LOCA) transients was performed by Shanghai nuclear engineering and design institute (SNERDI). The J-integral values at the deepest and the near cladding-base interface points of the crack were calculated with the linear elastic material model. And the RTPTS values were determined by the tangent approach. In the case that the RTNDT at or beyond the RPV design life may exceed the RTPTS according to the previous analysis procedure, the objective of this paper is to apply the Master Curve method to the re-evaluation of the integrity of this RPV, taking account of constraint and crack length effects. The over-conservatism in the previous evaluation is identified by comparing the new calculation with the previous one. The new RTPTS values are increased to varied extents for the different loading transients.

This content is only available via PDF.
You do not currently have access to this content.