To estimate maximum load-carrying capacity of pipes with multiple circumferential cracks, the net-section collapse load approach has been proposed. Although the proposed method has been validated against pipe test data, experimental data are quite limited due to large sets of variables to be considered. In this paper, a numerical method is proposed to generate virtual pipe test data with wide ranges of crack geometry and interspacing. To get confidence of the proposed numerical method, it is firstly applied to simulate existing 4-inch diameter schedule 80 pipes with two circumferential cracks. Predicted maximum loads agree well with experimental data. Then the proposed method is applied to generate maximum loads for wider ranges of crack geometry and loading conditions. It is found that the net-section collapse load approach works well for all cases considered.

This content is only available via PDF.
You do not currently have access to this content.