For nuclear welded components the complex nature of the residual stresses involved means it is often advantageous to produce mock-ups in order that the structural integrity and performance may be assessed. The weight and size of these components can make the production of mock-ups prohibitively expensive, and so the use of scaled models is considered here. Numerical analysis and finite element simulations have been carried out to investigate the scaling laws encountered affecting the applied loads, stress fields and crack driving forces that are of interest in the full sized component.
To illustrate the effects of scaling we consider the introduction of a residual stress through prior plastic deformation in rectangular beams of different sizes. A simple scaling law provides the loads required to introduce the same magnitude and distribution of residual stresses in different sized specimens. This is pertinent to uncracked beams. In contrast, if a crack is introduced this scaling law is no longer applicable and the stress intensity factor associated with residual and applied stresses differ for different sized specimens. Alternatively, to create the same crack driving force in different sized specimens different initial residual stress fields are required. The implications of these findings are discussed in the context of future work.