Nowadays, nuclear power plant (NPP) has become one of the most important energy sources to generate electricity in the world. Steam generator (SG) is a heat exchanger included in primary system of NPP.

Alloy 600 MA is widely used for SG tube material and this is well-known as weakness of stress corrosion cracking. In recent year, according to increase the number of long-term operation NPP, many axial surface flaws have been found on SG tube during an in-service inspection. Therefore, many researches have been carried out to maintain structural integrity of SG tube. Commonly, flaw shape needs to be idealized to calculate a burst pressure because detected flaw shape is complicated.

In this paper, validation of EPRI’s weakest sub-crack model, one of the well-known flaw idealization rule, is conducted through finite element (FE) analysis. For this, three actual flaws are assumed and these are idealized by using four flaw shape idealization methods; semi-elliptical crack model, rectangular crack model, maximum length with effective depth crack model and weakest sub-crack model. Burst pressure of each model is calculated and compared with burst pressure of actual shape crack model. As a result, if actual flaw is idealized by weakest sub-crack model, it is expected that conservative and efficient structural integrity assessment will be possible.

This content is only available via PDF.
You do not currently have access to this content.