In this experimental study, both environmental effects and various joining methods are investigated for their impact on the static and dynamic performance of multi-material lightweight single lap joints (SLJ). Adherends are conveniently divided into either composite-based or steel-based lightweight materials that include glass fiber reinforced polymer (GFRP), steel (St), aluminum (Al), or magnesium (Mg). A commercially available adhesive is selected for bonded-only and hybrid bonded-and-bolted joints. Changes in joint static load transfer capacity (LTC) and durability life are investigated for bonded-only, bolted-only, and hybrid bonded-and-bolted joints. Cyclic temperature profile fluctuates between 20° C and 80° C at a constant relative humidity (RH) level of either 20 % or 85 %. Effect on durability life is also studied under a cyclic load that fluctuates between 67.5 % and 75 % of the static load transfer capacity at ambient condition. Detailed discussion of the results, observations, and conclusions are presented in this paper.

This content is only available via PDF.
You do not currently have access to this content.