Surveillance tests have been conducted on Japanese Pressurized Water Reactor (PWR) plants for more than 40 years to monitor irradiation embrittlement of reactor pressure vessel (RPV) beltline materials. Fracture toughness specimens are contained as well as tensile and Charpy impact specimens in a surveillance capsule and utilized for structural integrity evaluation. Therefore, a lot of fracture toughness data have been obtained by fracture toughness tests using such as Compact Tension (CT) and Wedge Opening Loading (WOL) specimens. More than one thousand data have been accumulated for both unirradiated and irradiated materials until 2013. Additionally, in terms of fracture toughness, Master Curve (MC) concept has been widely used for fracture toughness transition curve expression of ferritic steels. Considering such a situation, the new fracture toughness curves using Tr30, which denotes Charpy V-notch 30ft-lb transition temperature, as an indexing parameter were developed based on MC concept depending on product form for Japanese RPV steels in 2014.

In this study, applicability of the newly developed curves of Japanese RPV steels to structural integrity evaluation is investigated. Especially, this paper focused on conservatism of the curves and the adequate margin to be added in evaluation of RPV integrity employing statistical methodology.

This content is only available via PDF.
You do not currently have access to this content.