According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure and the current code design allowable stresses are very conservative. Since the stress assessment based on the elastic analysis does not reflect actual response of piping systems including plastic region, rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load are expected to be developed for piping seismic design applications.

With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a research activity has been planned. Through the activity, the authors intend to establish two kinds of guidelines; 1) a guideline of a standard analysis procedure to evaluate elastic-plastic behavior of piping systems under extreme seismic loads with rational and conservative margins, and 2) a guideline that provide criteria for the seismic safety assessment of piping systems by the standard analysis to evaluate elastic-plastic behavior established by the above guideline. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test.

In this paper, the outline of the research activity and the preliminary results of benchmark analyses for a pipe element test are described.

This content is only available via PDF.
You do not currently have access to this content.