In PVP2011-57942 we reported improved endurance in fatigue tests with intermediate annealing to roughly simulate steady state operation between fatigue transients in NPP components. Quantification of this effect is in focus of our continued research on fatigue performance of niobium stabilized stainless steel (1.4550, X6CrNiNb1810mod). Similar effect is expected in nuclear power plants during normal operation — e.g. in a PWR surge line or in pressurizer spray lines.

Holds affect cyclic stress strain response. Stress amplitude, tensile mean stress and apparent elastic modulus are increased immediately after a hold, while decreased by cycles in between. Axial shortening is measured during hot holds at zero stress. This all suggest cyclic accumulation of lattice defects and recovery during holds. Recovery may occur through thermally activated dislocation migration together with diffusion, grouping and annihilation of lattice defects. More than one thermally activated processes control the rates of contraction during hold periods at elevated temperatures. Hold hardening delays crack formation by preventing plastic strain localization, in components also on macroscopic level.

A mechanism informed model is sought for transferring laboratory data to real plant components in terms of improving accuracy of numerical fatigue usage assessment. Anticipated mechanisms behind gradual changes in material responses are discussed in relation to quantitative effects of holds.

This content is only available via PDF.
You do not currently have access to this content.