The behavior of steel pipe junctions (Tees) subjected to strong loading in the presence of internal pressure is examined in the present study. The analysis is based on a set of monotonic and cyclic out-of plane bending tests under constant and increasing amplitude displacement-controlled loading schemes leading to low-cycle fatigue failure.

Rigorous finite element models are developed to support the experiments, accounting for detailed dimensional measurements and material testing results obtained prior to testing. A parametric analysis is also conducted focusing on the effect of the geometrical characteristics on the overall junction behavior. The performance of the Tee-junctions with varying geometries under out-of plane bending, in-plane bending and axial loading is also examined numerically accounting for the presence of internal pressure.

This content is only available via PDF.
You do not currently have access to this content.